Optical Characterization
By Spectroscopic Ellipsometry.

Ron Synowicki
J.A. Woollam Co., Inc.
Georgia Tech., December 2010
Morning Overview

- Spectroscopic Ellipsometry:
 - Part 2: Standard Applications.
 - Break
 - Part 3: Grading and Anisotropy.
 - Part 4: Infrared and In-Situ Ellipsometry.
1. Wavelength (Å, nm, or microns)

2. Photon Energy (eV).

\[E_{eV} = \frac{12400}{\lambda_{\AA}}, \quad E_{eV} = \frac{1240}{\lambda_{nm}}, \quad E_{eV} = \frac{1.240}{\lambda_{\mu m}} \]

3. Wavenumber (cm\(^{-1}\)). Used Mid to Far IR.

\[cm^{-1} = \frac{10000}{\lambda_{\mu m}} \]
Light Polarization

- “Shape” of the beam as it propagates towards our eyes. (Looking down z-axis).

- Polarization state defined by orientation & phase of the E-field vector
Linearly Polarized Light

Orthogonal E_x & E_y propagating in same direction.

- Component waves are *in phase* with each other.
- Result: *linearly polarized* wave.
 - the 'plane of vibration' depends on relative amplitudes of E_x & E_y
Circularly Polarized Light

Orthogonal \(E_x \) & \(E_y \):
- \(90^\circ \) out-of-phase \& equal in amplitude with each other
- Result: circularly polarized wave
Elliptically Polarized Light

Orthogonal E_x & E_y:

- Arbitrary phase & amplitude with each other
- Result: Elliptically polarized wave
 - linear and circular are subsets of elliptical polarization
 - Most general description of polarization state is elliptical.
Intensity and Polarization

- **Intensity** = “Size” of the Ellipse. \(I \propto E^2 \)
 - One Number Describes Wave Amplitude.

- **Polarization** = “Shape” of Beam.
 - 2 numbers required: ellipse Orientation and Ellipticity.
 - Independent of ellipse size. Independent of intensity.

 ![Intensity vs. Polarization Diagram](image-url)
Ellipsometry Overview

1. linearly polarized light ...

2. reflect off sample ...

3. elliptically polarized light !

- Measure the **change in polarization** of light reflected from surface.

Horizontal (s-) and Vertical (p-) components present.

\[\rho = \tan(\psi) e^{i\Delta} = \frac{\tilde{R}_p}{\tilde{R}_s} \]
Ellipsometers

- Every Ellipsometer contains the same basic components

- SE also needs wavelength selection.
Optical components needed for any ellipsometer:

- Light Source(s)
- Two Polarizers (Polarizer & Analyzer)
- Compensator (Optional, but desirable)
- Detector(s)
Ellipsometer Types

- Rotating Analyzer (RAE)
- Rotating Polarizer (RPE)
- Rotating Compensator (RCE)
- Polarization Modulation (PME)
- Null Ellipsometer
Ellipsometry Advantages

- **Measures ratio of two values!!!**
 - highly accurate & reproducible (even at low light levels).
 - no reference necessary.
- Measures a 'phase' quantity, ‘Δ’
 - very sensitive, especially to ultrathin films (<10 nm).
- **Spectroscopic** Ellipsometry (SE)
 - increased sensitivity to multiple layer film stacks.
 - measures data at wavelengths of interest...193, 633 nm, 1550 nm, bandgaps, etc.
- **Variable Angle Spectroscopic** Angle (VASE)
 - new information (different path length) with each angle optimizes sensitivity.
CONCLUSIONS:

- Light is reflected or transmitted from a sample.
- The polarization state of incoming light is known.
- The polarization state of reflected/transmitted light is measured.
- An accurate ellipsometer can determine Ψ and Δ from the sample.
Optical Properties: Basic Theory

Interaction of Light With Materials:

Goal: Provide a basic background on:

- Propagation of light in materials.
- Optical constants:
 - Dielectrics
 - Metals
 - Semiconductors
- Optical Absorption.
 - Mechanical Analogies.
 - Absorption Coefficient
- Brewster’s Angle.
 - Optimum Angles for ellipsometry.
- Coated Samples with many reflections.
 - Fresnel Coefficients. Interference effects.
Polarization Changes

- Reflections occur from:
 - Uncoated “Bulk” Substrates.
 - Thin film Samples (Coatings).

- Reflections caused by:
 - DIFFERENCES in Refractive Index at interfaces...
 - Air to glass, Glass to Silicon, etc.

\[R = \frac{(n_0 - n_1)^2}{(n_0 + n_1)^2} \]

For Uncoated Substrate
At Normal Incidence.

- Need to further understand Refractive index.
Refractive Index: What is it?

- **Refractive Index** = Optical “Density”
 - Impediment to propagation of light.
 - Speed in vacuum: \(c = 3 \times 10^8 \text{ m/s} \).
 - Wave speed in material = \(c/n \)

- **Analogy:**
 - Walking along the beach (easy).
 - Wading through water (harder).

- \(n_{\text{(air)}} = 1.00; \) Reference Value.
- \(n_{\text{(glass)}} = 1.50 \)
- \(n_{\text{(water)}} = 1.33 \)
Light

- Velocity and wavelength vary in different materials.

\[v = \frac{c}{n} \]

- Energy of photon: \(E(eV) = h\nu \approx \frac{1,240}{\lambda(nm)} \)

- Frequency, \(\nu \) of wave remains constant!
 (Conservation of Energy.)

\[\nu = \frac{v}{\lambda} \]
Refractive Index

- Determines Wave speed.

 \[\nu = \frac{c}{n} \]

- Determines Angle of Propagation.
 - Snell’s Law of Refraction:
 \[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

 - Pencil in glass of water appears “Broken”.

© 2010, All Rights Reserved
Absorption and Extinction

Absorption With Depth

- For absorbing bulk materials:
 = deeper propagation.
 = more energy loss.
 = complete extinction.

\[I(z) = I_0 e^{-\alpha z} \]
\[\alpha = \frac{4\pi k}{\lambda} \]

- As absorbing films become thicker:
 = longer propagation path in film.
 = wave spends longer time in film.
 = more absorption by material.
 = more extinction of wave.
Absorption Coefficient

Absorption with Depth:
- Exponential Absorption with depth, z, or film thickness.

 \[I(z) = I_{\text{max}} e^{-\alpha z} \]

- Exponential Decay of wave.

Absorption Coefficient, \(\alpha \):

\[\alpha(\lambda) = \frac{4\pi k(\lambda)}{\lambda} \]

- Units: 1/(length) (1/nm, 1/microns, 1/Å, etc.)
Complex Refractive Index.

- Both n and k are needed to describe real materials.
- \(n = "\text{Refractive Index}" \)
 - Gives wave speed = \(c/n \).
 - Gives direction of propagation = refraction angle.
 - Snell’s Law
- \(k = "\text{Extinction Coefficient}" \)
 - Loss of energy in wave. Intensity is “Extinguished.”
- Both n and k vary with wavelength.
 - Index Dispersion: One reason for doing Spectroscopic ellipsometry.
- Together called “Complex Refractive Index”:
 \[\tilde{n}(\lambda) = n(\lambda) + ik(\lambda) \]
Optical Constants: Definitions

Complex Refractive Index:
\[\tilde{n}(\lambda) = n(\lambda) + ik(\lambda) \]
- Describes what material does to light wave.
 - Slows down, wavelength changes, refraction, extinction.

Alternatively...

Complex Dielectric Function:
\[\varepsilon(\lambda) = \varepsilon_1(\lambda) + i\varepsilon_2(\lambda) \]
- Describes what wave does to material.
 - \(\varepsilon_1 = \) volume polarization term ➔ Oscillating charges = Dipoles.
 - \(\varepsilon_2 = \) volume absorption ➔ Carrier generation.
Complex Dielectric Function

- Dielectric function describes material’s response to electro-magnetic radiation
- Refractive index describes changes to light wave caused by interaction with materials
 - is the complex square root of the dielectric function

\[n + ik = \sqrt{\varepsilon} = \sqrt{\varepsilon_1 + i\varepsilon_2} \]
Optical Constants: Conversions

Converting dielectric function & refractive index.

At each wavelength:

\[\varepsilon = \varepsilon_1 + i \varepsilon_2 = (n + ik)^2 \]

\[\varepsilon_1 = n^2 - k^2 \]
\[\varepsilon_2 = 2nk \]

\[n = \sqrt{\frac{\varepsilon_1 + \sqrt{(\varepsilon_1^2 + \varepsilon_2^2)}}{2}} \]
\[k = \sqrt{\frac{-\varepsilon_1 + \sqrt{(\varepsilon_1^2 + \varepsilon_2^2)}}{2}} \]

WVASE32 will do these conversions automatically!
Optical Absorption

- Absorption can also occur: \(k > 0 \).

- **Four causes of Absorption:**
 - 1. Free electrons absorb wave energy.
 - Metals, Semiconductors \(\rightarrow \) Conductivity.
 - 2. Electrons bound to atoms in material.
 - Dielectrics. \(\rightarrow \) Oscillating electron clouds. Heat Losses.
 - 3. Electrons broken free from bound states.
 - Bound electrons become free electrons.
 - Occur at higher energies in visible and UV.
 - 4. Vibrations of atoms or molecules.
 - Infrared spectroscopy. \(\lambda = 2 \) microns and longer.

- Consider each type separately.
Optical Constants

Different regions represent different absorptions.

Rutile TiO$_2$, UV to IR Spectral Range

Lattice Vibrations

Transparent

Electronic Transitions

\[\varepsilon_1 \]

\[\varepsilon_2 \]

Photon Energy (eV)

IR

Visible

UV

© 2010, All Rights Reserved
Metals: Refractive Index

- **Metals**: Have more electrons than needed for bonding. (Covalent Bonds = Sharing of electrons).
- **“Extra” electrons** not shared are set “free” by the atoms. Travel freely in the material. **Absorb Light**.

- Free electrons give:
 - Electrical Conduction.
 - Optical absorption.

- Applied field of light wave causes electrons to move! Wave energy lost as heat.
Dielectrics: Refractive Index

- Oscillating electron charge cloud.

- Electrons can move easily. Very light.
- Heavy atomic cores move hardly at all.
- Displaced charge = Electric Dipoles.
Dielectrics: Refractive Index

- Oscillations Take Time!
 - Wave must start charge cloud moving. “Push” electrons out of way.
 - Moving charge cloud will re-emit wave. \(\rightarrow \) No energy lost!!
 - Re-emitted wave is “Delayed” in phase.

\[n = \frac{\text{speed in air}}{\text{speed in material}} \]

- Analogy: \(\rightarrow \) Walking in water.
 - You must push water out of the way.
 - You become slowed down.

\[\rightarrow \text{WAVE HAS BEEN SLOWED!!} \]

Reference Wave: In Phase \(\rightarrow \) Out of Phase
Dielectrics: Refractive Index

- Transparent at visible & near infrared wavelengths.
- Absorption occurs in UV (Sometimes deep UV).
- High index materials absorb at longer wavelengths.
- Low index materials transparent into UV or VUV.

Low Index
- Low Index Films: MgF2, SiO2, and Al2O3

High Index
- Hi Index Films: Ta2O5 and Nb2O5

© 2010, All Rights Reserved
Dielectrics: Refractive Index

- **Oscillating Charge Cloud** = Mechanical Oscillator.

- **Mechanical Oscillators:**
 - Mass on Spring.
 - Simple Pendulum = Playground Swing.

- Mechanical Oscillators have:
 - **RESONANT FREQUENCY!!!**
 - Oscillators can be driven **Below, At, or Above** the Resonant Frequency. 3 different cases.
Dielectrics: Refractive Index

Case 1: Below Resonance

- Index increases with frequency (shorter λ).
- Energy more efficiently coupled to oscillators.

![Graph showing dielectric optical constants with wavelengths ranging from 200 to 1400 nm and indices of refraction and extinction coefficients plotted.]

- Material is Transparent.
- Dipoles give energy back to wave.

 Index increases toward shorter λ:
 - Trying to walk faster through water.
Dielectrics: Refractive Index

Case 2: Resonance

- Maximum amplitude of Electron clouds.
- Neighboring clouds begin to interact with each other.

Absorption due to e-cloud “bumping”.

Energy taken from Dipoles, given to k.

Dielectric Optical Constants: At Resonance

Wavelength (nm)	Index of refraction n	Extinction Coefficient k
200 | 1.70 | 0.00
300 | 1.80 | 0.00
400 | 1.90 | 0.00
500 | 2.00 | 0.00
600 | 2.10 | 0.00

Electron Clouds Bump. Lose energy as heat.
Index Dispersion

- Optical constants vary with wavelength:
 \[\hat{n}(\lambda) = n(\lambda) + ik(\lambda) \]

- Real and imaginary optical properties are not independent (Kramers-Kronig consistent).

Normal Dispersion: (transparent wavelengths)
No absorption present \((k=0)\),
Index decreases as wavelength increases

Anomalous Dispersion: (absorbing wavelengths)
Absorption in material causes wavelength-dependent changes in index as described by K-K consistency
Dielectrics: Refractive Index

- Multiple resonant absorptions often occur.
- Organic AR Coating.

AZ BARLi ARC Optical Constants

<table>
<thead>
<tr>
<th>Wavelength in nm</th>
<th>Index of Refraction (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2</td>
</tr>
<tr>
<td>200</td>
<td>2.2</td>
</tr>
<tr>
<td>400</td>
<td>1.8</td>
</tr>
<tr>
<td>600</td>
<td>1.6</td>
</tr>
<tr>
<td>800</td>
<td>1.4</td>
</tr>
<tr>
<td>1000</td>
<td>1.2</td>
</tr>
<tr>
<td>1200</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wavelength in nm</th>
<th>Extinction Coefficient (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>200</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>0.4</td>
</tr>
<tr>
<td>600</td>
<td>0.6</td>
</tr>
<tr>
<td>800</td>
<td>0.8</td>
</tr>
<tr>
<td>1000</td>
<td>1.0</td>
</tr>
<tr>
<td>1200</td>
<td>1.0</td>
</tr>
</tbody>
</table>

© 2010, All Rights Reserved
Semiconductors: Refractive Index

- **Sharp absorption features = “Critical Points”**.
 - Valence to conduction band transitions.
 - Bound charge becomes free charge...ionization. $E > E_g$.

Silicon Optical Constants

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Index of Refraction (n)</th>
<th>Extinction Coefficient (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>300</td>
<td>6.0</td>
<td>5.0</td>
</tr>
<tr>
<td>600</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>900</td>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>1200</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1500</td>
<td>2.0</td>
<td>1.0</td>
</tr>
<tr>
<td>1800</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Sharp Absorptions
- In UV
- Normal Dispersion
- At longer wavelengths
Semiconductors: Refractive Index

- Compare Crystalline and Amorphous Silicon.
 - Sharp critical point transitions seen in crystalline Silicon.
 - No critical points seen in amorphous materials.

![Graphs showing the comparison between Crystalline and Amorphous Silicon](image-url)
Semiconductors: Refractive Index

Polycrystalline Silicon: Optical constants change with crystallinity.
Infrared Absorption: Molecular Vibration

Electric Field with slow frequency (IR) can vibrate molecules (stretch or bend)

- CH\textsubscript{2} stretch (symmetric)
- CH\textsubscript{2} stretch (asymmetric)
- N-H stretch
- C=O stretch

![Infrared Absorption Graph](image-url)
Optical Absorption

Review:
4 major types studied.

- **Metals.**
 - Free Carrier Absorption.

- **Dielectrics.**
 - Resonant Absorption.

- **Semiconductors.**
 - Resonant absorption below band gap.
 - Bound to free electron transitions at band gap E_g and above.
 - Free carriers above band gap...Interband transitions.

- **Infrared Wavelengths.**
 - Vibrational absorption of molecules.
Dispersion Equations

- Mathematical representations of optical constants as a function of wavelength
- **Advantages:**
 - Easily adjust optical constants with only a few "free" parameters.
 - No noise
 - Easier to interpolate or extrapolate
 - Often maintain K-K consistency
- **Transparent Types:**
 - Cauchy and Sellmeier
Normal Dispersion: Cauchy Model

- Used to describe index of refraction (n) of transparent materials ($k=0$).
- Three parameters (A, B, C) describe index versus wavelength (λ).

\[n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4} \]

λ sets index range

B and C give dispersion shape

Index of refraction n versus Wavelength (nm)
All Oscillator models have 3 parameters in common:

- 1. Amplitude (Amp) or “Strength”
- 2. Broadening (Br)…”Width”
- 3. Center energy (E_c) or wavelength…”position”
Anomalous Dispersion: Oscillator Models

- Oscillator models: Variety of Functions Available!
 - Lorentz, Gaussian, Harmonic, Tauc-Lorentz, etc.
 - Built-in Kramers-Kronig Consistency!

![Graph showing Real(Dielectric Constant), ε₁ and Imag(Dielectric Constant), ε₂ as functions of Wavelength (nm). Brackets indicate Br and Amp, with Ec as a critical point.]
Multiple Absorptions: Ensemble Model

- Dielectric function can be modeled as a sum or ensemble of various oscillators
 - Different Oscillator can be used for each absorption region
 - Oscillators are summed together.
 \[\tilde{\varepsilon}(\omega) = \varepsilon_{\text{offset}} + \sum_n \text{Osc}_{\text{type}}(\text{Amp}, \omega_n, \gamma_n, \ldots) \]
 - Remains KK-consistent.

[Graph showing imaginary part of dielectric constant versus photon energy with different oscillator types: Drude, Gaussian, Tauc-Lorentz, Ito, PBP]
Fitting More than 1 Oscillator. Genosc.mat Layer

1) Model absorptions - multiple Tauc-Lorentz or Gaussian Oscillators.
2) Example of an Organic shown in Figure below (before ε_2 fit).
Example: Brewer DUV 30 Polymer

- Use 14 Gaussian oscillators to fit point by point results.
- Data fit 130-1700 nm.
Example: Brewer DUV 30

Compare Point by point with Oscillator Model fits.

DUV 30 Optical Constants

- Refractive Index n
- Extinction Coefficient k

Wavelength (nm):
- 0, 300, 600, 900, 1200, 1500, 1800

Photon Energy (eV):
- 0, 2, 4, 6, 8, 10

DUV 30, point by point vs. DUV 30-Gaussian Oscillators
Example: Brewer DUV 30

Data Fit 130-1700 nm.

Oscillator Model Fit.

<table>
<thead>
<tr>
<th>1</th>
<th>duv30-14 oscillators</th>
<th>609.64 Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>si_vuv</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Generated and Experimental

![Generated and Experimental](image)

Model Fit
- Exp E 65°
- Exp E 70°
- Exp E 75°

© 2010, All Rights Reserved

J.A. Woollam Co., Inc.
Dispersion Relationships

- Mathematical representations of optical constants as a function of wavelength..."Oscillator Models"

- Advantages:
 - Add flexibility beyond tabulated optical constants.
 - Use much smaller set of “free” parameters.
 - Often maintain K-K consistency.
 - No noise.
 - Easier to interpolate or extrapolate.

- Types:
 - Cauchy, Sellmeier (Transparent Region).
 - Lorentz, Gaussian, Tauc-Lorentz (Absorbing Region).
Thin Film Interference

- Each reflected wave has phase and amplitude.
Thick versus Thin

- Thicker films have more interference oscillations.
- Oscillations provide information about Δn and thickness.
Data Acquisition

- Wavelengths (Range and Number)?
 - Wavelengths of interest?
 - Where is film transparent?
 - Film thickness?
 - Sharp features in data?

- Angles?
 - What are Substrate and Films?
 - Single or Multilayers?
 - Complex materials?
Wavelengths?

- Resolve data features.

<table>
<thead>
<tr>
<th>Film Thickness</th>
<th>Steps (eV)</th>
<th>Steps (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td><200 nm</td>
<td>0.1 eV</td>
<td>20 nm</td>
</tr>
<tr>
<td>200 - 500 nm</td>
<td>0.05 eV</td>
<td>10 nm</td>
</tr>
<tr>
<td>500 nm - 1 μm</td>
<td>0.025 eV</td>
<td>5 nm</td>
</tr>
<tr>
<td>1 - 3 μm</td>
<td>0.01 eV</td>
<td>2 nm</td>
</tr>
<tr>
<td>>3 μm</td>
<td></td>
<td>2 nm, Long wavelengths</td>
</tr>
</tbody>
</table>

Experimental Data

Data every 2nm

2.5 μm Oxide
Typical Angles

Typical Angle Combinations:

- Thin films on Si: 65°, 75°
- Thick films on Si: 60°, 75°
 or 55°, 65°, 75°
- n-matched films on glass: 55°, 56.5°, 58°
- Other films on glass: 50°, 60°, 70°
- Films on metals: 65°, 75°
- Anisotropic & Graded films: 55°, 65°, 75°
 or 45°, 60°, 75°

Spot size vs. angle

<table>
<thead>
<tr>
<th>Angle of Incidence</th>
<th>(spot-length)/(beam-dia.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°</td>
<td>1.1</td>
</tr>
<tr>
<td>35°</td>
<td>1.2</td>
</tr>
<tr>
<td>45°</td>
<td>1.4</td>
</tr>
<tr>
<td>55°</td>
<td>1.7</td>
</tr>
<tr>
<td>65°</td>
<td>2.4</td>
</tr>
<tr>
<td>75°</td>
<td>3.9</td>
</tr>
<tr>
<td>80°</td>
<td>5.8</td>
</tr>
<tr>
<td>85°</td>
<td>11.5</td>
</tr>
</tbody>
</table>
Data Analysis

What Ellipsometry Measures:

Psi (Ψ)
Delta (Δ)

What we are Interested in:

Film Thickness
Refractive Index
Surface Roughness
Interfacial Regions
Composition
Crystallinity
Anisotropy
Uniformity
...

Model-based analysis usually required to extract quantities of interest!!
2. Build Model

- Layered structure that describes sample that light interacted with.
- Need thickness and optical constants for all layers.

![Diagram](image)
3. Generated data

- Calculate $\Psi(\lambda, \phi)/\Delta(\lambda, \phi)$ values of model

- Compare to Experimental data
 - Visually & Mathematically.

- Adjust unknown (fit) parameters to get close to solution.
Mean Squared Error

- How do we compare results?
- **Mean Squared Error (MSE)** used to quantify the difference between experimental and model-generated data.

\[
MSE = \sqrt{\frac{1}{2N - M} \sum_{i=1}^{N} \left[\left(\frac{\Psi_{i}^{\text{mod}} - \Psi_{i}^{\text{exp}}}{\sigma_{\Psi,i}^{\text{exp}}} \right)^2 + \left(\frac{\Delta_{i}^{\text{mod}} - \Delta_{i}^{\text{exp}}}{\sigma_{\Delta,i}^{\text{exp}}} \right)^2 \right]}
\]

- A smaller MSE implies a better fit.
- MSE may be weighted by the error bars of each measurement, so noisy data are less influence.
4. Data Fit

- The Marquardt-Levenberg* algorithm is used to quickly find the minimum MSE.
- Good starting values may be important.

Data Fit Types

- All vary “fit” parameters to find best agreement with Experimental Data

Normal Fit
- Works with **ALL** selected data simultaneously.

Global Fit
- **Searches Grid** of starting values.

Point-by-Point Fit
- **Fit on wavelength-by-wavelength basis.**
Evaluate Results

- Find the **simplest optical model** that fits Experimental Data.
- Visually compare experimental and generated data.
- How low is MSE? Can it be reduced?
- Are fit parameters physical?
- Check mathematical “goodness of fit” indicators
 - Correlation matrix, 90% confidence limits.
Morning Overview

- Spectroscopic Ellipsometry:
 - Part 2: Standard Applications.
 - Break
 - Part 3: Grading and Anisotropy.
 - Part 4: Infrared and In-Situ Ellipsometry.
Data Analysis Strategies

Substrates
- Opaque Substrates.
- Semiconductor substrates.
- Transparent substrates.

Films
- Transparent thin films.
- Absorbing thin films.
- Dispersion Models.
Substrate Optical Constants

- **Substrate**

- **Dielectrics**

- **Semiconductors**

- **Metals**

Index of Refraction, N

- **Silicon**
 - Index, n
 - Extinction Coefficient, k

- **Aluminum**
 - Index of refraction, n
 - Extinction Coefficient, k
Opaque Substrates

Two Categories:

- **“Bulk” Samples** → No overlayers.
 - Polished metal.

- **Metal films**: Optically thick.
 - Small 1/\(a\) penetration depth.
 - \(~800\,\text{Å}\) or more metal becomes opaque.
 - \(~400\,\text{Å}\) in reflection mode since 2 passes needed.
Opaque Substrates

Bulk Materials and Optically Thick Films

- Two experimental parameters measured: Ψ and Δ.
- Two unknowns to be determined: n and k at each wavelength.

Fit Strategy:
- “Invert” psi and delta for n and k.
 - Normal fit from reference values if material is known (e.g. bulk aluminum).
 - Point by point fit from pseudo optical constants if unknown.

Examples: Optically thick Gold (Au, Al, Pt, etc).

For Practice: WVASE32 Software manual.
Example: Optically Thick Aluminum

Simple Point-by-Point fit for n and k.

Optical Constants

Generated and Experimental

Optical Constants

Generated and Experimental

© 2010, All Rights Reserved
Semiconductor Substrates

- Bulk semiconductor optical constants are well known.
 - Crystalline structure insures repeatable optical/electrical properties.

- Semiconductors have high index.
 - Great index contrast with low index native oxides or coatings!
 - High index contrast gives extra sensitivity to thickness and index.

- VERY Smooth.

- Doping not important at visible wavelengths.
 - Use any doping value and crystalline orientation.
 - Doping IS important in the MID-IR, however (5 micron or longer).

- Fit Strategy:
 - Use published index values.
 - Fit for oxide thickness.

- Example: Thin SiO₂/Si.

- For Practice: Ellipsometer Calibration Wafer.

Transparent Substrates

Two Categories:

1. Uncoated Glass.
2. Rigid bulk Plastic.

• **VERY** Transparent (k=0 or very small).
 - Large to infinite 1/a penetration depth.
 - Back surface reflections may be present.

• 3 ways to handle back surface reflection:
 - Separate front and back beams (thick samples).
 - Roughen back side (grinder, sandpaper, small sandblaster).
 - Model with WVASE32 back surface reflection correction.
Transparent Substrates

- **Examples:** 1 mm thick 7059, 1737, or float glass.

- **Fit Strategy:**
 - One unknown to be determined \(n(\lambda) \).
 - Only need one experimental parameter \(\Psi(\lambda) \).

- **Fit psi for index at each wavelength.**
 - Cauchy fit, or
 - Normal fit.
 - **Tip:** Reflectance will be very low near Brewster’s angle...so acquire data above Brewster’s angle.
 - Use 60°-80° for best psi data, delta will be near zero.
 - Effectively a psi only fit.

- **For Practice:** WVASE32 Software manual.
Cauchy

- Describes index \(n \) of transparent materials \((k=0) \). “Normal Dispersion”.

\[
n(\lambda) = A + \frac{B}{\lambda^2} + \frac{C}{\lambda^4}
\]

\[\text{A sets amplitude}\]

\[\text{B and C give dispersion shape}\]

- Wavelength (nm)

- Index of refraction \(n \)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Index of refraction (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>1.44</td>
</tr>
<tr>
<td>400</td>
<td>1.47</td>
</tr>
<tr>
<td>600</td>
<td>1.50</td>
</tr>
<tr>
<td>800</td>
<td>1.53</td>
</tr>
<tr>
<td>1000</td>
<td>1.56</td>
</tr>
<tr>
<td>1200</td>
<td>1.59</td>
</tr>
</tbody>
</table>

© 2010, All Rights Reserved
Transparent Substrates

- **Obtain Error Bars on index.**
 - Perform both Cauchy and normal fits.
 - Compare them!...great way to obtain error bars at each wavelength.
 - Cauchy gives smooth average.
 - Normal fit gives measured error.

![Graph showing index of refraction 'n' vs Wavelength (nm) for Glass Optical Constants: Comparison](image_url)
Transparent Substrates

How to obtain small k-values.

- $k(\lambda)$ can be as small as 10^{-6} (0.000001) for transparent glasses!
 - NOT seen in reflection mode. (no path length.)
 - Increase path length with transmission data.
 - EASY to see small k-values with transmission data.

Graphs:

- **Wavelength (nm)**: 0, 300, 600, 900, 1200, 1500, 1800
- **Transmission (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)**
- **Model Fit** and Experimental data

© 2010, All Rights Reserved
Transparent Substrates

How to obtain small k-values.

- $k(\lambda)$ can be as small as 10^{-6} (0.000001) for transparent glasses!
Transparent Substrates

Soda-Lime Glass

5 mm thick Soda-Lime glass:

- VERY important to know substrate absorption if fitting transmission data for thin films.
Transparent Films

- Sensitivity comes from **INDEX DIFFERENCE** between layers = Stronger reflections.
- High index difference gives greater sensitivity:
 - Smaller error bars on thickness and index, OR
 - More layers!...Hi-Lo stack → optical filters.
- Fit refractive index with Cauchy equation.
- Tip: For greatest sensitivity, maximize the index difference between adjacent layers.

For Practice: WVASE32 Software manual.
Absorbing Films

- Thin Film Data Analysis
 - Organic and Polymer Thin Films.
 - Resists, AR coatings, pellicles.
 - Semiconductor Thin Films.
 - Point-by-Point versus Dispersion Models.
 - Alloy ratio models.
 - Surface oxides and roughness.
 - Dispersion Models.
 - Metal and Opaque Thin Films.
 - Thin metal on glass? …Add transmission data.
 - Thin metal film on thick SiO$_2$ on Silicon.
UV Absorbing Films

- Transparent films with onset of absorption in UV: Si$_3$N$_4$, SiON, Resists, Organics, etc.

![Diagram of UV absorbing films with index of refraction (n) and extinction coefficient (k) curves](image1)

![Experimental Data graph showing wavelength vs. index of refraction and extinction coefficient](image2)
UV Absorbing Films

Divide analysis into 2 parts:

- **Step 1: Transparent Region.**
 - Range select data where film is transparent ($k=0$)
 - typically longer wavelengths.
 - Two unknowns $\rightarrow n(\lambda)$ & thickness.
 - Two measured parameters $\rightarrow \Psi(\lambda)$ & $\Delta(\lambda)$.
 - Cauchy fit $n(\lambda)$ & thickness

- **Step 2: Absorbing Region.**
 - Fix thickness from Step 1.
 - Fit n/k on a wavelength-by-wavelength basis.
 - “Point by Point Fit.”
Step 1: Cauchy fit

- Cauchy fit at long wavelengths determines thickness

Cauchy only valid in transparent region
Advantages

- Small features in n/k are identified.
- QUICK!
- EASY!
Point-by-Point Fits

- **Advantages**
 - QUICK!
 - EASY!
 - Capture small features.

- **Disadvantages**
 - Not necessarily KK consistent. Noise can be present.
Zinc Sulfide on Silicon

- Fit to Cauchy model over limited spectral range (0.73 to 3eV)
- Include surface layer, optical constants obtained from separate sample that had been annealed.
- Add index grading.
- Point-by-point fit n and k over entire spectral range.
- Small glitches in Pt-by-Pt optical constants. Can use them to set up dispersion model.

Small glitches are not physical.
Setting up Dispersion Model

Using questionable Pt-by-Pt optical constants to set up parameterized dispersion model.

- Generate data from “bulk” Pt-by-Pt optical constants.
- Set up oscillators fitting to $\langle \varepsilon_2 \rangle$.
- Fit pole magnitudes and positions to $\langle \varepsilon_1 \rangle$.
- Replace Pt-by-Pt optical constants with dispersion model.
- Make small adjustments fitting to experimental data.
Absorbing Thin Films: Dispersion Models

- **Advantages:**
 - Correct surface layer optical constants not as critical.
 - Fit to all the data simultaneously.
 - Sensitive to all parameters at once. Regions of spectrum are more sensitive to certain parameters that others are not.
 - More Flexibility.

- **Disadvantages:**
 - Setting up dispersion model can be rigorous.
 - Can miss small details in optical constants.
Procedure for Absorbing Films

1. Cauchy Fit
 - transparent region only
2. Pt-by-Pt Fit – all wavelengths
 - fix thickness
 - Save tabulated n & k values
 - Replace Cauchy with Genosc
3. Match n,k using Genosc
 - Load tabulated file from pt-by-pt fit into Reference
 - fit reference – first e2, then e1
4. Fit Ψ & Δ data using new Genosc model
Compound Semiconductor Films

Alloy Semiconductors:

- AlGaAs, InGaAs, HgCdTe, etc.
- Use alloy material files. Fit for alloy ratio.
 - Critical points shifted automatically with alloy fraction!

For Practice: WVASE32 Software manual.
 - Example #10, page 13-71. GaAs/AlGaAs/GaAs wafer.
Alloy Ratio Model: $\text{Al}_x\text{Ga}_{1-x}\text{As}$ Multilayer

- Superlattice model allows coupling layers together.
- Fit alloy ratios and thicknesses.
- Many fit parameters but do not appear to be correlated.

Different alloy ratios produce different optical constants. Alloy ratios models allow adjustment of optical constants with a single parameter (x).

<table>
<thead>
<tr>
<th>Layer</th>
<th>Optical Constant (λ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 GaAs Oxide</td>
<td>19.9 Å</td>
</tr>
<tr>
<td>8 GaAs</td>
<td>3348.1 Å</td>
</tr>
<tr>
<td>7 AlGaAs $x=0.365$ (Coupled to 5)</td>
<td>995.6 Å</td>
</tr>
<tr>
<td>6 GaAs</td>
<td>849.3 Å</td>
</tr>
<tr>
<td>5 AlGaAs $x=0.365$</td>
<td>995.6 Å</td>
</tr>
<tr>
<td>4 GaAs</td>
<td>852.9 Å</td>
</tr>
<tr>
<td>3 AlGaAs $x=0.274$</td>
<td>866.5 Å</td>
</tr>
<tr>
<td>2 GaAs</td>
<td>843.3 Å</td>
</tr>
<tr>
<td>1 AlGaAs $x=0.168$</td>
<td>742.5 Å</td>
</tr>
<tr>
<td>0 GaAs Substrate</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Thin Metal Films on Glass

- Semitransparent Ag on Quartz substrate
 - Adding Transmission intensity data breaks correlation between optical constants and thickness.
 - Ag optical constants can be fit at each measured wavelength, or modeled with summation of Drude and several Lorentz oscillators.

For Practice: WVASE32 Software manual.
 - Example #7, page 13-51. Thin Silver on Fused Silica.
Thin Metal Film on Glass

Results: 300 Å Silver on Fused Silica.

<table>
<thead>
<tr>
<th>0</th>
<th>siO2</th>
<th>1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ag</td>
<td>341.7 Å</td>
</tr>
<tr>
<td>2</td>
<td>srough</td>
<td>7.4 Å</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>siO2</th>
<th>1 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ag</td>
<td>341.7 Å</td>
</tr>
<tr>
<td>2</td>
<td>srough</td>
<td>7.4 Å</td>
</tr>
</tbody>
</table>

- Wavelength (nm): 300, 600, 900, 1200, 1500, 1800
- Ψ in degrees: 10, 20, 30, 40, 50
- Δ in degrees: 0, 30, 60, 90, 120, 150, 180

- Model Fit
- Exp E 65°
- Exp E 70°
- Exp E 75°
Thin Metal Over Thick Oxide

- TiN on thick SiO$_2$ on Silicon.
 - SiO$_2$ introduces interference oscillations in data.
 - TiN dampens and phase shifts these oscillations, extent depends on thickness of TiN film.
 - Data acquired at a wide angle spread to ensure largely different path lengths.

Oscillations damped with increasing TiN thickness.

For Practice: WVASE32 Software manual.
- Example #12, page 13-83. TiN on SiO$_2$ on Silicon.
Thin Metal on Thick Oxide

- Results: TiN on SiO₂ on Silicon.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>tin_I</td>
<td>55.128 nm</td>
</tr>
<tr>
<td>sio2_jaw</td>
<td>627.46 nm</td>
</tr>
<tr>
<td>si_jaw</td>
<td>1 mm</td>
</tr>
</tbody>
</table>

Generated and Experimental

tin_I Optical Constants

© 2010, All Rights Reserved
Break!!